If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3f^2+7f-7=0
a = 3; b = 7; c = -7;
Δ = b2-4ac
Δ = 72-4·3·(-7)
Δ = 133
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{133}}{2*3}=\frac{-7-\sqrt{133}}{6} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{133}}{2*3}=\frac{-7+\sqrt{133}}{6} $
| 20x-9=20x-9 | | 2(2×-3)=4x-6 | | 6(5-x)+40=2(×-45) | | 10x–45=7x | | x/6+8=7 | | ÷y-2=8 | | 4x-6+3x−5=45 | | 2y^2-11y-36=0 | | 6x-5=27-2x | | 180=(4x-2)+(x+22) | | 2.3(p+1.4)=-9.6 | | 2. 6x-5=27-2x | | 4x−6+3x−5=45 | | 3x2-19x-14=0 | | (1.2-x)(3.8-x)=0 | | (2/x)-4=-6 | | -4-3p=7 | | 25=9x5-4x | | 9x-18=26 | | 4x-7+7x-17=x | | 7x+2=26-5x | | -3+4z=-11 | | 25-4y,y=5 | | 44v=61 | | x+60=8x*0.5 | | 2n(-5n-6)=0 | | x+60=8x•0.5 | | y-3(2y-7)=36 | | 2n(5n-6)=0 | | -6x-3x=8-5 | | 16x+4+180=360 | | 4x+8+2x+16=7x+5 |